dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorMartínez, Soledad
dc.creatorRosa, Félix
dc.date2011-05-26T19:57:13Z
dc.date2011-05-26T19:57:13Z
dc.date2011-05-26
dc.date.accessioned2017-04-05T17:07:27Z
dc.date.available2017-04-05T17:07:27Z
dc.identifierhttp://acervodigital.unesp.br/handle/123456789/5276
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/7330
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/832687
dc.descriptionThe Cauchy mean-value theorem states that if f and g are two functions continuous on [a,b] and differentiable on (a,b), then there exists a point c in (a,b) such that f´(c)(g(b)-g(a)) = g´(c)(f(b)-f(a)) Geometric interpretation: Consider the parametric curve X(t) = (f(t), g(t)), t in [a,b], X(a)≠X(b); then the line passing through X(a), X(b) is parallel to the tangent line passing through X(c)
dc.descriptionContinuous functions, differentiable functions, parametric curves, mean-value theorem
dc.descriptionComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática
dc.publisherWolfram Demonstration Project
dc.relationCauchyMeanValueTheorem.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectDerivative
dc.subjectMean value theorem
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Análise
dc.titleCauchy mean-value theorem
dc.typeSoftware


Este ítem pertenece a la siguiente institución