Brasil
| Software
Uniform continuity
dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Hafner, Izidor | |
dc.date | 2011-05-26T19:56:18Z | |
dc.date | 2011-05-26T19:56:18Z | |
dc.date | 2011-05-26 | |
dc.date.accessioned | 2017-04-05T17:04:48Z | |
dc.date.available | 2017-04-05T17:04:48Z | |
dc.identifier | http://acervodigital.unesp.br/handle/123456789/4919 | |
dc.identifier | http://objetoseducacionais2.mec.gov.br/handle/mec/7242 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/832330 | |
dc.description | Continuity, epsilin-delta limit definition, uniform continuity | |
dc.description | This Demonstration illustrates a theorem of analysis: a function that is continuous on the closed interval [a,b] is uniformly continuous on the interval. A function is continuous if, for each point x0 and each positive number epsilon , there is a positive number delta such that whenever /x-x0/< delta, /f(x) – f(x0)/ < epsilon. A function is uniformly continuous if, for each positive number epsilon, there is a positive number delta such that for all x0, whenever /x-x0/< delta, /f(x) – f(x0)/ < epsilon. In the first case delta depends on both epsilon and x0; in the second, delta depends only on epsilon | |
dc.description | Componente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática | |
dc.publisher | Wolfram Demonstration Project | |
dc.relation | UniformContinuity.nbp | |
dc.rights | Demonstration freeware using Mathematica Player | |
dc.subject | Uniform continuity | |
dc.subject | Epsilon-delta | |
dc.subject | Educação Superior::Ciências Exatas e da Terra::Matemática::Análise | |
dc.title | Uniform continuity | |
dc.type | Software |