Brasil | Software
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorHafner, Izidor
dc.date2011-05-26T19:56:18Z
dc.date2011-05-26T19:56:18Z
dc.date2011-05-26
dc.date.accessioned2017-04-05T17:04:48Z
dc.date.available2017-04-05T17:04:48Z
dc.identifierhttp://acervodigital.unesp.br/handle/123456789/4919
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/7242
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/832330
dc.descriptionContinuity, epsilin-delta limit definition, uniform continuity
dc.descriptionThis Demonstration illustrates a theorem of analysis: a function that is continuous on the closed interval [a,b] is uniformly continuous on the interval. A function is continuous if, for each point x0 and each positive number epsilon , there is a positive number delta such that whenever /x-x0/< delta, /f(x) – f(x0)/ < epsilon. A function is uniformly continuous if, for each positive number epsilon, there is a positive number delta such that for all x0, whenever /x-x0/< delta, /f(x) – f(x0)/ < epsilon. In the first case delta depends on both epsilon and x0; in the second, delta depends only on epsilon
dc.descriptionComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática
dc.publisherWolfram Demonstration Project
dc.relationUniformContinuity.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectUniform continuity
dc.subjectEpsilon-delta
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Análise
dc.titleUniform continuity
dc.typeSoftware


Este ítem pertenece a la siguiente institución