dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorPegg Jr, Ed
dc.date2011-05-26T19:54:14Z
dc.date2011-05-26T19:54:14Z
dc.date2011-05-26
dc.date.accessioned2017-04-05T16:59:56Z
dc.date.available2017-04-05T16:59:56Z
dc.identifierhttp://acervodigital.unesp.br/handle/123456789/4270
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/9139
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/831681
dc.descriptionKnowledge about algorithms, historical mathematics, integers, number theory, rational numbers, representations of numbers and theorem proving
dc.descriptionIn 1834, Johann Dirichlet noted that if there are five objects in four drawers then there is a drawer with two or more objects. The Schubfachprinzip, or drawer principle, got renamed as the pigeonhole principle, and became a powerful tool in mathematical proofs. Pick a number that ends with 1, 3, 7, or 9. Will it evenly divide a number consisting entirely of ones (a repunit)? Answer: yes. Proof: Suppose 239 was chosen. Take the remainder of 239 dividing 10, 100, 1000, ..., 10^239. The chosen number will not divide evenly into any of those 239 powers of 10, so there are 238 possible remainders, 1 to 238. By the pigeonhole principle, two remainders must be the same, for some 10^a and 10^b. As it turns out, 10^3 and 10^10 both give remainder 44. Subtracting, 9,999,999,000 is the result, which yields 1,111,111 when divided by 9000. When b>a, 10^b-10^a always returns an all-1 number multiplied by 9 and some power of 10, finishing the proof. The reciprocal of the chosen number has a repeating decimal of similar length. Consider: 1,111,111/239 = 4649. 4649 x 9 = 41 841. 1/239 = .00418410041841(...)
dc.descriptionComponente Curricular::Ensino Fundamental::Séries Finais::Matemática
dc.publisherWolfram Demonstrations Project
dc.relation238ThePigeonholePrincipleRepunits.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectEducação Básica::Ensino Fundamental Final::Matemática::Números e operações
dc.subjectAlgorithm
dc.subjectHistorical mathematics
dc.subjectNumber theory
dc.subjectRational number
dc.subjectRepresentation of number
dc.subjectTheorem proving
dc.subjectPrincípio matemático
dc.subjectProva matemática
dc.subjectTeoria da prova
dc.titleThe pigeonhole principle - repunits
dc.typeSoftware


Este ítem pertenece a la siguiente institución