dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorZeleny, Enrique
dc.date2011-05-26T19:52:56Z
dc.date2011-05-26T19:52:56Z
dc.date2011-05-26
dc.date.accessioned2017-04-05T16:56:43Z
dc.date.available2017-04-05T16:56:43Z
dc.identifierhttp://acervodigital.unesp.br/handle/123456789/3841
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/9105
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/831252
dc.descriptionKnowledge about number theory and prime numbers
dc.descriptionMove the n slider to see that if n is a prime number, n squares cannot be arranged into a rectangular array unless the width or length is 1. That is, it is not possible to represent a prime as the product of two integers axb with a,b>1. Let q and r be the quotient and remainder of the division of n by d. (That is, for each n and d, let n=dq+r, where r and q are positive integers and 0<=r<d.) This Demonstration shows n as a dxq rectangle of blue squares plus an additional r red squares. If n is not prime, there may be some d that make red squares appear, but that only means that particular d does not divide n; there are other d diferent of 1, n that do divide n, in which case no red squares appear
dc.descriptionComponente Curricular::Ensino Fundamental::Séries Finais::Matemática
dc.relation210WhyANumberIsPrime.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectEducação Básica::Ensino Fundamental Final::Matemática::Números e operações
dc.subjectNumber Theory
dc.subjectPrime Numbers
dc.titleWhy a number is prime
dc.typeSoftware


Este ítem pertenece a la siguiente institución