dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Blinder, S. M. | |
dc.date | 2011-05-26T19:52:46Z | |
dc.date | 2011-05-26T19:52:46Z | |
dc.date | 2011-05-26 | |
dc.date.accessioned | 2017-04-05T16:56:04Z | |
dc.date.available | 2017-04-05T16:56:04Z | |
dc.identifier | http://acervodigital.unesp.br/handle/123456789/3756 | |
dc.identifier | http://objetoseducacionais2.mec.gov.br/handle/mec/6432 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/831167 | |
dc.description | Concepts electromagnetism and electrodynamics | |
dc.description | A point charge q located at r 0 near an infinite grounded plane conductor at x=0 has the same potential distribution as a pair of charges q and -q symmetrically placed with respect to the plane. The potential is then given by f(r)=q/(4 p e0) (1/(|r -r0|)-1/(|r +r0|)). The labeled equipotentials in the contour plot can be multiplied by q/(4 p e0) to give their actual values. A point charge q at r 0 either inside or outside a grounded spherical conductor of radius r, centered at the origin, can be solved by placing an image charge -q'=-r/(|r0|) q at r' =r2/(|(Subscript[r, 0]|)2) r 0.You can drag the point charge q, a locator. A checkbox enables you to see the image charge q'. It will go off-scale if the locator is too close to the center of the sphere, but it still contributes to the potential | |
dc.description | Componente Curricular::Educação Superior::Ciências Exatas e da Terra::Física | |
dc.relation | MethodOfImagesInElectrostatics.nbp | |
dc.rights | Demonstration freeware using Mathematica Player | |
dc.subject | Electric field | |
dc.subject | Electric potencial | |
dc.subject | Electrostatics | |
dc.subject | Laplaces's equation | |
dc.subject | Educação Superior::Ciências Exatas e da Terra::Física::Eletricidade e Magnetismo; Campos e Partículas Carregadas | |
dc.title | Method of images in electrostatics | |
dc.type | Software | |