dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Pegg Jr, Ed | |
dc.date | 2011-05-26T19:52:28Z | |
dc.date | 2011-05-26T19:52:28Z | |
dc.date | 2011-05-26 | |
dc.date.accessioned | 2017-04-05T16:55:12Z | |
dc.date.available | 2017-04-05T16:55:12Z | |
dc.identifier | http://acervodigital.unesp.br/handle/123456789/3642 | |
dc.identifier | http://objetoseducacionais2.mec.gov.br/handle/mec/6041 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/831053 | |
dc.description | The plots in this Demonstration show precision error. The formula arctan(x)+arctan(1/x)=π/2 is true for all real x≠0. To plot arctan(kx)+arctan(1/(kx))-π/2 for various k, Mathematica correctly finds numerical values very close to 0. In the plot, these infinitesimal deviations are magnified a quadrillion-fold | |
dc.description | Componente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática | |
dc.publisher | Wolfram | |
dc.relation | PrecisionError.nbp | |
dc.rights | Demonstration freeware using Mathematica Player | |
dc.subject | Numerical analysis | |
dc.subject | Educação Superior::Ciências Exatas e da Terra::Matemática::Matemática Aplicada | |
dc.title | Precision Error | |
dc.type | Software | |