dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorWolfram, Stephen
dc.date2011-05-26T19:52:13Z
dc.date2011-05-26T19:52:13Z
dc.date2011-05-26
dc.date.accessioned2017-04-05T16:54:50Z
dc.date.available2017-04-05T16:54:50Z
dc.identifierhttp://acervodigital.unesp.br/handle/123456789/3597
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/5960
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/831008
dc.descriptionKnowledge about complex analysis, exponential functions and special functions
dc.descriptionThe Riemann zeta function (or, precisely, the Riemann-Siegel Z function) along the critical line. The Riemann hypothesis implies that no minimum should ever lie above the axis
dc.descriptionComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática
dc.relation164RiemannZetaFunction.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectComplex Analysis
dc.subjectExponential Functions
dc.subjectSpecial Functions
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Análise Complexa
dc.titleRiemann zeta function
dc.typeSoftware


Este ítem pertenece a la siguiente institución