dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorNochella, Jesse
dc.date2011-05-26T19:52:10Z
dc.date2011-05-26T19:52:10Z
dc.date2011-05-26
dc.date.accessioned2017-04-05T16:54:45Z
dc.date.available2017-04-05T16:54:45Z
dc.identifierhttp://acervodigital.unesp.br/handle/123456789/3586
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/5942
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/830997
dc.descriptionKnowledge about algorithms, number theory and simple computational systems
dc.descriptionThe Collatz conjecture states that for every positive integer n, repeating the simple algorithm n={(n/2) if n is even or (3n+1) is n is odd} always eventually reaches the number 1. The conjecture remains unproven since 1937 when it was first proposed by Lothar Collatz. This Demonstration shows the eventual merging of paths to 1, for all positive integers up to a given maximum. Because the algorithm has two cases, the graph is always a binary tree
dc.descriptionComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática
dc.relation152CollatzPaths.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectAlgorithm
dc.subjectNumber theory
dc.subjectSimple computational system
dc.subjectAlgoritmo
dc.subjectTeoria do número
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Análise Complexa
dc.titleCollatz paths
dc.typeSoftware


Este ítem pertenece a la siguiente institución