dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Beck, George | |
dc.date | 2011-05-26T19:51:49Z | |
dc.date | 2011-05-26T19:51:49Z | |
dc.date | 2011-05-26 | |
dc.date.accessioned | 2017-04-05T16:53:22Z | |
dc.date.available | 2017-04-05T16:53:22Z | |
dc.identifier | http://acervodigital.unesp.br/handle/123456789/3402 | |
dc.identifier | http://objetoseducacionais2.mec.gov.br/handle/mec/6001 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/830813 | |
dc.description | If the center of the cone is in the plane, the intersection is a point, a straight line, or a pair of straight lines, depending on the angle of the axis of the cone. If the center of the cone is not in the plane, the intersection is a conic section. Let v be the angle of the cone, that is, the angle between the axis and one of the generating lines of the cone. You get a circle if the angle is 0 or Pi, an ellipse if the angle is between 0 and Pi-v (or between Pi+v and 2*Pi ), a parabola if the angle is Pi =/= v, and a hyperbola if the angle is within v of Pi | |
dc.description | Componente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática | |
dc.relation | IntersectingARotatingConeWithAPlane.nbp | |
dc.rights | Demonstration freeware using Mathematica Player | |
dc.subject | Cone | |
dc.subject | Educação Superior::Ciências Exatas e da Terra::Matemática::Geometria e Topologia | |
dc.title | Intersecting a rotating cone with a plane | |
dc.type | Software | |