dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBoucher, Chris
dc.date2011-05-26T19:48:55Z
dc.date2011-05-26T19:48:55Z
dc.date2011-05-26
dc.date.accessioned2017-04-05T16:48:28Z
dc.date.available2017-04-05T16:48:28Z
dc.identifierhttp://acervodigital.unesp.br/handle/123456789/2768
dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/5062
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/830179
dc.descriptionPre-calculus
dc.descriptionOne form of L'Hospital's rule states that if f(x)tends to 0 and g(x)tends to 0 as x tends to a, then lim of f(x)/g(x) when x tends to a is egual to lim of (f'(x))/(g'(x)) when x tends to a. In this Demonstration, you can choose from a variety of functions with roots at 1 to form the numerator and denominator of a quotient. These functions are plotted as dashed curves and their quotient is plotted as a solid gold curve. The application of L'Hospital's rule to compute the limit of the quotient at 1 is shown above the plot
dc.descriptionComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática
dc.publisherWolfram Demonstration Project
dc.relationLHospitalsRuleFor00Forms.nbp
dc.rightsDemonstration freeware using Mathematica Player
dc.subjectCalculus
dc.subjectCollege mathematics
dc.subjectDerivative
dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Álgebra Comutativa
dc.titleL'hospital's rule for 0/0 forms
dc.typeSoftware


Este ítem pertenece a la siguiente institución