dc.creatorRipoll, Jaime Bruck
dc.date2011-01-26T05:59:13Z
dc.date2001
dc.identifier0030-8730
dc.identifierhttp://hdl.handle.net/10183/27489
dc.identifier000316987
dc.descriptionWe establish the existence and uniqueness of solutions to the Dirichlet problem for the cmc surface equation, including the minimal one, for zero boundary data, in certain domains of the plane. We obtain results that characterize the sphere and cmc graphs among compact embedded cmc surfaces with planar boundary satisfying certain geometric conditions. We also find conditions that imply that a compact embedded cmc surface which is a graph near the boundary is indeed a global graph.
dc.formatapplication/pdf
dc.languageeng
dc.relationPacific journal of mathematics. Berkeley. Vol. 198, no. 1 (2001), p. 175-196.
dc.rightsOpen Access
dc.subjectCurvas
dc.subjectGráficos
dc.subjectProblema de Dirichlet
dc.subjectSuperfícies de curvatura média
dc.subjectGeometria diferencial
dc.titleSome characterization, uniqueness and existence results for euclidean graphs of constant mean curvature with planar boundary
dc.typeArtigo de periódico
dc.typeEstrangeiro


Este ítem pertenece a la siguiente institución