dc.creatorOchoa, Daniel
dc.creatorGautama, Sidharta
dc.creatorVintimilla, Boris
dc.date2009-07-29
dc.date2009-07-29
dc.date2009-07-29
dc.date.accessioned2023-08-08T22:18:09Z
dc.date.available2023-08-08T22:18:09Z
dc.identifier978-3-540-74606-5
dc.identifierhttp://www.dspace.espol.edu.ec/handle/123456789/6184
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8089734
dc.descriptionIn this paper we present an approach to perform automated analysis of nematodes in population images. Occlusion, shape variability and structural noise make reliable recognition of individuals a task difficult. Our approach relies on shape and geometrical statistical data obtained from samples of segmented lines. We study how shape similarity in the objects of interest, is encoded in active contour energy component values and exploit them to define shape features. Without having to build a specific model or making explicit assumptions on the interaction of overlapping objects, our results show that a considerable number of individual can be extracted even in highly cluttered regions when shape information is consistent with the patterns found in a given sample set.
dc.descriptionEspol
dc.formatapplication/pdf
dc.formatapplication/postscript
dc.languageeng
dc.relationSpringer LNCS;4678
dc.rightsopenAccess
dc.subjectFEATURE EXTRACTION
dc.subjectSEGMENTATION
dc.subjectRECOGNITION
dc.subjectSTATISTICAL SHAPE ANALYSIS
dc.subjectESPOL
dc.subjectFIEC
dc.subjectCVR
dc.subjectROBOTICA
dc.titleContour energy features for recognition of biological specimens in population images
dc.typeOther


Este ítem pertenece a la siguiente institución