dc.contributor | Ruiz Claeyssen, Julio Cesar | |
dc.creator | Costa, Sânzara Nhiaia Jardim | |
dc.date | 2007-06-06T19:14:02Z | |
dc.date | 2006 | |
dc.identifier | http://hdl.handle.net/10183/8208 | |
dc.identifier | 000570583 | |
dc.description | E desenvolvida a formulação newtoniana do modelo de Timoshenko para vigas elásticas, através da resposta fundamental, ou função de Green de valor inicial, e da análise modal. São feitas aplicações para o caso de plataformas off-shore e nanotecnologia. A derivação das equações governantes do modelo de Timo-shenko, considerando condições de contorno clássicas e não-clássicas, é feita segundo o princípio extendido de Hamilton. Realiza-se uma análise espectral no sistema de equações diferenciais parciais evolutivas de segunda ordem que governam os modelos, utilizando, na determinação das frequências naturais e autofunções, uma base gerada por uma resposta espacial fundamental. Esta resposta satisfaz um sistema não clássico de equações diferenciais ordinárias de segunda ordem, que inclui um operador diferencial de primeira ordem e um coeficiente de rigidez que depende não-linearmente da frequência natural. A solução analítica do problema é obtida utilizando-se uma fórmula que envolve a resolução de equações características de três tipos: algébrica, diferencial e em diferenças. O estudo de respostas dinâmicas e, em particular, respostas forçadas no domínio da frequência, é considerado para sistemas evolutivos de segunda ordem, com auxílio da formulaçãao do problema adjunto. A função matricial de transferência é calculada de maneira espectral e não-espectral. A caracterização de autovalores duplos acima de valores críticos da frequência para vigas livre-livre é reformulada matricialmente, em termos da base dinâmica. Respostas devido a excitações harmônicas e variadas condições iniciais são simuladas para vários tipos de vigas. Para o comportamento de estruturas flexíveis off-shore modeladas segundo as teorias de Euler-Bernoulli e de Rayleigh e a lei de Morison, é proposta uma extensão à teoria de Timoshenko. Os modos de vibração do modelo de Vlasov para nanotubos são determinados através de limite dos modos correspondentes ao modelo de Timoshenko. Simulações são realizadas para nanotubos de carbono. | |
dc.description | It is developed a newtonian formulation of the elastic beam model of Timoshenko, through a fundamental response , or initial value Green's function, and from modal analysis. Applications are considered in offshore structures and nanotechnology. The motion equations of the Timoshenko model, under classical or non classical boundary conditions, are obtained according to the extended Hamilton principle. It is done a spectral analysis of the system of second order evolution partial differential equations that governs the model, using a basis generated by a fundamental spatial response for the determination of the frequencies and eigen- functions. This response satisfies a non classical system of second order ordinary differential equations that includes a first derivative operator and a stiffness coefficient which depends, in a non linear manner, on the natural frequencies. The analytical solution of the problem is obtained by using a formulae which involves the resolution of characteristic equations of three types: algebraic, differential and on differences. The study of dynamical responses and, particularly, of forced responses in the frequency domain, it is considered for second order evolution systems with aid of the adjoint problem formulation. The transfer matrix function is determined by spectral and non spectral means. The characterization of double eigenvalues above critical frequency values for free-free beams is reformulated in matrix form, in terms of the dynamical basis. Responses due to harmonic excitation and various initial conditions are simulated for several types of beams. For the behaviour of flexible offshore structures that are modelled according to Euler-Bernoulli and Rayleigh beam models and subjected to Morison's law, it is proposed a extension for Timoshenko beam theory. The vibration modes of the Vlasov model for nanotubes are obtained as a limit case of the modes corresponding to the Timoshenko model. Simulations are performed for carbon nanotubes. | |
dc.format | application/pdf | |
dc.language | por | |
dc.rights | Open Access | |
dc.subject | Nanotubos de carbono | |
dc.subject | Estruturas offshore | |
dc.subject | Modelo de Timoshenko | |
dc.subject | Vigas elásticas | |
dc.title | O modelo de Timoshenko em vigas elásticas, estruturas offshore e nanotubos de carbono através da resposta fundamental de valor inicial | |
dc.type | Tese | |