Dissertação
Um assistente de feedback para o serviço de filtragem do software direto
Autor
Mello, Luis Cesar de
Resumen
Este trabalho descreve a especificação e implementação do protótipo Assistente de Feedback que ajuda os usuários a ajustarem os parâmetros do serviço de filtragem de mensagens vindas do correio eletrônico de sistemas como o Direto. O Assistente de Feedback é instalado no computador do usuário do Direto para monitorar suas preferências representadas pelas ações aplicadas nas mensagens do correio eletrônico. O trabalho apresenta, ainda, uma revisão bibliográfica sobre os conceitos gerais de probabilidades, redes Bayesianas e classificadores. Procura-se descrever as características gerais dos classificadores, em especial o Naive Bayes, sua lógica e seu desempenho comparado a outros classificadores. São abordados, também, conceitos relacionados ao modelo de perfil de usuário e o ambiente Direto. O Naive Bayes torna-se atraente para ser utilizado no Assistente de Feedback por apresentar bom desempenho sobre os demais classificadores e por ser eficiente na predição, quando os atributos são independentes entre si. O Assistente de Feedback utiliza um classificador Naive Bayes para predizer as preferências por intermédio das ações do usuário. Utiliza, também, pesos que representarão a satisfação do usuário para os termos extraídos do corpo da mensagem. Esses pesos são associados às ações do usuário para estimar os termos mais interessantes e menos interessantes, pelo valor de suas médias finais. Quando o usuário desejar alterar os filtros de mensagens do Direto, ele solicita ao Assistente de Feedback sugestões para possíveis exclusões dos termos menos interessantes e as possíveis inclusões dos termos mais interessantes. O protótipo é testado utilizando dois métodos de avaliação para medir o grau de precisão e o desempenho do Assistente de Feedback. Os resultados obtidos na avaliação de precisão apresentam valores satisfatórios, considerando o uso de cinco classes pelo classificador do Assistente de Feedback. Os resultados dos testes de desempenho permitem observar que, se forem utilizadas máquinas com configurações mais atualizadas, os usuários conseguirão receber sugestões com tempo de respostas mais toleráveis.