dc.creatorLibrado Arturo Sarmiento Reyes
dc.creatorALEJANDRO DIAZ SANCHEZ
dc.date2013
dc.date.accessioned2023-07-25T16:25:27Z
dc.date.available2023-07-25T16:25:27Z
dc.identifierhttp://inaoe.repositorioinstitucional.mx/jspui/handle/1009/2361
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7807537
dc.descriptionA coupling between Homotopy Continuation methods and Picard’s Method (HCPM) is proposed to provide an approximate solution to non-linear differential equations (NDE). By means of a simple case study, the solution calculated by HCPM will show lower relative error compared to Picard’s and HPM. Also, the solution calculated by HCPM has lower number of terms than Picard’s method and requires significantly fewer iterations than the employed by the HPM method.
dc.formatapplication/pdf
dc.languageeng
dc.publisherApplied Mathematical Sciences
dc.relationcitation:Vazquez-Leal, H, et al., (2013), Homotopy-Continuation Picard Method, Applied Mathematical Sciences, Vol. 7(129):6429–6439
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectinfo:eu-repo/classification/Inspec/Picard Method
dc.subjectinfo:eu-repo/classification/Inspec/Homotopy Continuation
dc.subjectinfo:eu-repo/classification/Inspec/Nonlinear Differential Equations
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/22
dc.subjectinfo:eu-repo/classification/cti/2203
dc.subjectinfo:eu-repo/classification/cti/2203
dc.titleHomotopy-Continuation Picard Method
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.audiencestudents
dc.audienceresearchers
dc.audiencegeneralPublic


Este ítem pertenece a la siguiente institución