dc.creatorLibrado Arturo Sarmiento Reyes
dc.creatorALEJANDRO DIAZ SANCHEZ
dc.date2013-05
dc.date.accessioned2023-07-25T16:25:27Z
dc.date.available2023-07-25T16:25:27Z
dc.identifierhttp://inaoe.repositorioinstitucional.mx/jspui/handle/1009/2356
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7807532
dc.descriptionSolving nonlinear ordinary differential equations is relevant because phenomena on the frontiers of modern sciences are often nonlinear in nature; therefore this article proposes Perturbation Method (PM) to solve nonlinear problems. As case study PM is employed to obtain a handy approximate solution for Gelfand’s differential equation which governing combustible gas dynamics. Comparing figures between approximate and exact solutions, it is shown that PM method result extremely efficient.
dc.formatapplication/pdf
dc.languageeng
dc.publisherAsian Journal of Mathematics and Statistics
dc.relationcitation:Filobello-Nino, U., et al, (2013), Perturbation Method as a Powerful Tool to Solve Highly Nonlinear Problems: The Case of Gelfand’s Equation, Asian Journal of Mathematics and Statistics, Vol. 6(2):76–82
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectinfo:eu-repo/classification/Inspec/Gelfand's differential equation
dc.subjectinfo:eu-repo/classification/Inspec/Nonlinear differential equation
dc.subjectinfo:eu-repo/classification/Inspec/Pertubation method
dc.subjectinfo:eu-repo/classification/Inspec/Approximate solutions
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/22
dc.subjectinfo:eu-repo/classification/cti/2203
dc.subjectinfo:eu-repo/classification/cti/2203
dc.titlePerturbation Method as a Powerful Tool to Solve Highly Nonlinear Problems: The Case of Gelfand’s Equation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.audiencestudents
dc.audienceresearchers
dc.audiencegeneralPublic


Este ítem pertenece a la siguiente institución