dc.contributorJesús Antonio González Bernal
dc.creatorJUAN FRANCISCO ROBLES CAMACHO
dc.date2007-02
dc.date.accessioned2023-07-25T16:25:14Z
dc.date.available2023-07-25T16:25:14Z
dc.identifierhttp://inaoe.repositorioinstitucional.mx/jspui/handle/1009/2243
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7807424
dc.descriptionA method for classifying multi-spectral satellite images based on some knowledge, called Multi-Model Classification Scheme (MMCS), is presented in this work. The MMCS is divided into two parts: Descriptive and Contextual. The descriptive part refers to the texture, geometrical shape and spectral features of a region. The contextual part refers to the topological relationships among the image regions. Data mining techniques are used to discover both types of knowledge. The extracted knowledge from the regions of interest, coming from their descriptive features (texture, shape and spectral) and contextual features (topological relationships), is organized in a knowledge representation scheme based on semantic networks. The MMCS reclassifies the previously classified regions by the parametric algorithms (Minimum Mean Distance, Parallelepiped, Maximum Similarity and Mahalanobis Distance) in order to improve the algorithm classification results that only take into account the spectral features of the satellite image. The Halcon Image-Analysis System (version. 7,1) was used to process satellite images. Matlab was used to preclassify a satellite image using parametric algorithm. C++ was used to classify the regions in the MMCS. Experiments were done over 30 segments of multi-spectral satellite images (SPOT-5) from two areas in Mexico, specifically the coastal zones of the Port of Veracruz and Campeche. 20 segments were used during the training processes and the remaining 10 at the classifiers testing processes.
dc.descriptionEn este trabajo se presenta un método de clasificación de imágenes satelitales multiespectrales basado en conocimiento, llamado, Esquema de Clasificación Multi Modelos o MMCS. El conocimiento del MMCS es dividido en dos partes: Conocimiento Descriptivo y Conocimiento Contextual. El Conocimiento Descriptivo se refiere a las características Espectrales, de Textura y de Forma Geométrica de una región. El conocimiento Contextual se refiere a las relaciones topológicas entre las regiones de la imagen. Técnicas de Minería de datos son usadas para el descubrimiento del conocimiento Descriptivo Contextual de las Regiones de interés. El conocimiento extraído de las regiones de interés, a partir de sus características descriptivas (Espectrales, Textura y Forma) y su características contextuales (relaciones Topológicas) se organizan en un Esquema de representación de Conocimiento basado en Redes Semánticas. El MMCS realiza la reclasificación de las regiones previamente clasificadas por los algoritmos paramétricos (Distancia Mínima a la Media, Paralelepípedo, Máxima Similaridad y Distancia Mahalanobis), con la finalidad de mejorar los resultados de clasificación de los algoritmos que sólo toman en cuenta las características espectrales de la imagen satelital. Para el tratamiento de las imágenes satelitales se usó el sistema de análisis de imágenes Halcón en su version 7.1. Para la preclasificación de las imágenes satelitales por los algoritmos paramétricos se utilizó Matlab. Y la clasificación de las regiones en el MMCS se realizó en C++. Los experimentos se realizaron sobre 30 segmentos de Imágenes Satelitales Multiespectrales SPOT-5 en dos áreas de estudio dentro de la República Mexicana, que comprenden zonas costeras del puerto de Veracruz y Campeche. Para los procesos de entrenamiento se utilizaron 20 segmentos y los 10 segmentos restantes se utilizaron para los procesos de pruebas de los clasificadores.
dc.formatapplication/pdf
dc.languagespa
dc.publisherInstituto Nacional de Astrofísica, Óptica y Electrónica
dc.relationcitation:Robles Camacho, Juan Francisco, (2007). Extracción de Mapas Temáticos a partir de la Clasificación en Imágenes Satelitales, Tesis de Maestría, Instituto Nacional de Astrofísica, Óptica y Electrónica
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectinfo:eu-repo/classification/Inspec/Classifying multi-spectral satellite
dc.subjectinfo:eu-repo/classification/Inspec/Geometrical shape
dc.subjectinfo:eu-repo/classification/Inspec/Spectral features
dc.subjectinfo:eu-repo/classification/cti/7
dc.subjectinfo:eu-repo/classification/cti/33
dc.subjectinfo:eu-repo/classification/cti/3304
dc.subjectinfo:eu-repo/classification/cti/120312
dc.subjectinfo:eu-repo/classification/cti/120312
dc.titleExtracción de Mapas Temáticos a partir de la Clasificación en Imágenes Satelitales
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.audiencestudents
dc.audienceresearchers
dc.audiencegeneralPublic


Este ítem pertenece a la siguiente institución