dc.creatorBLAS MANUEL RODRIGUEZ LARA
dc.creatorHéctor Manuel Moya Cessa
dc.date2013-02-12
dc.date.accessioned2023-07-25T16:25:09Z
dc.date.available2023-07-25T16:25:09Z
dc.identifierhttp://inaoe.repositorioinstitucional.mx/jspui/handle/1009/2196
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7807376
dc.descriptionWe show a right unitary transformation approach based on Susskind– Glogower operators that diagonalizes a generalized Dicke Hamiltonian in the field basis and delivers a tridiagonal Hamiltonian in the Dicke basis. This tridiagonal Hamiltonian is diagonalized by a set of orthogonal polynomials satisfying a three-term recurrence relation. Our result is used to deliver a closed form, analytic time evolution for the case of a Jaynes–Cummings–Kerr model and to study the time evolution of the population inversion, reduced field entropy, and Husimi’s Q-function of the field for ensembles of interacting two-level systems under a Dicke–Kerr model.
dc.formatapplication/pdf
dc.languageeng
dc.publisherJournal of Physics A: Mathematical and Theoretical
dc.relationcitation:Rodríguez-Lara, B. M. and Moya-Cessa, H. M., (2013). The exact solution of generalized Dicke models via Susskind–Glogower operators, Journal of Physics A: Mathematical and Theoretical, Vol. 46(9):1-12
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectinfo:eu-repo/classification/Inspec/Dicke models
dc.subjectinfo:eu-repo/classification/Inspec/Susskind– Glogower operators
dc.subjectinfo:eu-repo/classification/Inspec/Tridiagonal Hamiltonia
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/22
dc.subjectinfo:eu-repo/classification/cti/2209
dc.subjectinfo:eu-repo/classification/cti/2209
dc.titleThe exact solution of generalized Dicke models via Susskind–Glogower operators
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.audiencestudents
dc.audienceresearchers
dc.audiencegeneralPublic


Este ítem pertenece a la siguiente institución