dc.creatorLuis Hernández Martínez
dc.date2012
dc.date.accessioned2023-07-25T16:24:54Z
dc.date.available2023-07-25T16:24:54Z
dc.identifierhttp://inaoe.repositorioinstitucional.mx/jspui/handle/1009/2073
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7807255
dc.descriptionIn this study, Homotopy Perturbation Method (HPM) is used to provide an approximate solution to the Blasius nonlinear differential equation that describes the behaviour of a two-dimensional viscous laminar flow over a flat plate. Comparing results between approximate and exact solutions shows that HPM method is extremely efficient, if the initial guess is suitably chosen.
dc.formatapplication/pdf
dc.languageeng
dc.publisherAsian Journal of Mathematics & Statistics
dc.relationcitation:Filobello-Nino, U., et al., (2012), An Approximate Solution of Blasius Equation by using HPM Method, Asian Journal of Mathematics & Statistics, Vol. 5(2):50–59.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectinfo:eu-repo/classification/Inspec/Boundary layer
dc.subjectinfo:eu-repo/classification/Inspec/Fluid mechanics
dc.subjectinfo:eu-repo/classification/Inspec/Homotopy perturbation methods
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/22
dc.subjectinfo:eu-repo/classification/cti/2203
dc.subjectinfo:eu-repo/classification/cti/2203
dc.titleAn Approximate Solution of Blasius Equation by using HPM Method
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.audiencestudents
dc.audienceresearchers
dc.audiencegeneralPublic


Este ítem pertenece a la siguiente institución