dc.creatorNIKOLAI KORNEEV ZABELLO
dc.creatorFRANCISCO MARROQUIN GUTIERREZ
dc.date2007-01
dc.date.accessioned2023-07-25T16:22:40Z
dc.date.available2023-07-25T16:22:40Z
dc.identifierhttp://inaoe.repositorioinstitucional.mx/jspui/handle/1009/923
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7806121
dc.descriptionWe investigate the propagation of periodic patterns in one and two dimensions for weak Kerr-type nonlinearity. Nonlinear amplitudes are introduced, which are related to the Fourier harmonics of a wave by polynomials of third and fifth degree. These amplitudes evolve in a particularly simple way and permit easy reconstruction of waveform after propagation. For the one-dimensional case, solutions are quasiperiodic, and solitonlike structures can be identified. For the two-dimensional case, recurrent and chaotic regimes exist depending on lattice type.
dc.formatapplication/pdf
dc.languageeng
dc.publisherOptical Society of America
dc.relationcitation:Korneev, N. & Marroquín, F. (2007). Long-distance propagation of periodic patterns in weakly nonlinear Kerr medium, Optical Society of America, Vol. 24 (1): 84-89
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/22
dc.subjectinfo:eu-repo/classification/cti/2209
dc.subjectinfo:eu-repo/classification/cti/2209
dc.titleLong-distance propagation of periodic patterns in weakly nonlinear Kerr medium
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.audiencestudents
dc.audienceresearchers
dc.audiencegeneralPublic


Este ítem pertenece a la siguiente institución