dc.contributor | JOSE EDUARDO MORALES MORALES | |
dc.contributor | HUGO JAIR ESCALANTE BALDERAS | |
dc.creator | YARED SABINAS FIGUEROA | |
dc.date | 2013-08 | |
dc.date.accessioned | 2023-07-25T16:22:20Z | |
dc.date.available | 2023-07-25T16:22:20Z | |
dc.identifier | http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/803 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/7806020 | |
dc.description | Early gesture recognition consists in recognizing gestures at their beginning,
using incomplete information. Among other applications, these methods can be
used to compensate for the delay of gesture-based interactive systems. In this thesis,
we propose a new approach for early recognition of full-body gestures based
on dynamic time warping (DTW) that uses a single example from each category.
Our method is based on the comparison between time sequences obtained from
known and unknown gestures. The classifier provides a response before the unknown
gesture finishes and can work under the one-shot scheme, i.e. only need
one example of each gesture to recognize the unknown gestures. We performed experiments
in the MSR-Actions3D benchmark and another data set that we built.
Results show that, in average, the classifier is capable of recognizing gestures with
~50% of the information in real time, losing only 13% of accuracy with respect
to using all the information. | |
dc.description | El reconocimiento anticipado de gestos es el problema de reconocer los gestos
en sus partes iniciales, por lo que el reconocimiento debe hacerse sin contar con
toda la información sobre el gesto que se quiere reconocer. Entre otras aplicaciones,
el reconocimiento anticipado puede ser usado para compensar el retraso
de sistemas interactivos basados en gestos. En esta tesis proponemos un nuevo
enfoque para el reconocimiento temprano de gestos de cuerpo completo que está
basado en Dynamic Time Warping (DTW) y que no necesita una fase compleja de
entrenamiento. Nuestro método está basado en la comparación de secuencias de
tiempo, mismas que se obtienen de los gestos conocidos y desconocidos. Nuestro
método arroja una respuesta antes de que el gesto desconocido sea terminado y
es capaz de funcionar bajo el esquema one-shoot, i.e., sólo necesita un ejemplo de
cada gesto para poder clasificar los gestos entrantes. Realizamos experimentos con
una base de datos que nosotros construimos y con la base de datos MSR-Action3D
propuesta en otros trabajos. Los resultados muestran que nuestro clasificador es
capaz de reconocer gestos en tiempo real con sólo el ~50% de la información, perdiendo
un máximo de 13% de precisión con respecto a los resultados obtenidos
con nuestro método de clasificación sin anticipación (en promedio). | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Instituto Nacional de Astrofísica, Óptica y Electrónica | |
dc.relation | citation:Sabinas-Figueroa Y. | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | info:eu-repo/classification/Reconocimiento temprano de gestos/Early gesture recognition | |
dc.subject | info:eu-repo/classification/Aprendizaje de una sola vez/One-shot learning | |
dc.subject | info:eu-repo/classification/Kinect/Kinect | |
dc.subject | info:eu-repo/classification/Secuencias de tiempo/Time sequences | |
dc.subject | info:eu-repo/classification/cti/1 | |
dc.subject | info:eu-repo/classification/cti/12 | |
dc.subject | info:eu-repo/classification/cti/1203 | |
dc.subject | info:eu-repo/classification/cti/1203 | |
dc.title | Reconocimiento anticipado de gestos | |
dc.type | info:eu-repo/semantics/masterThesis | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.audience | students | |
dc.audience | researchers | |
dc.audience | generalPublic | |