dc.contributorGUSTAVO RODRIGUEZ GOMEZ
dc.creatorFABRICIO OTONIEL PEREZ PEREZ
dc.date2013-01
dc.date.accessioned2023-07-25T16:21:14Z
dc.date.available2023-07-25T16:21:14Z
dc.identifierhttp://inaoe.repositorioinstitucional.mx/jspui/handle/1009/271
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7805491
dc.descriptionIn many research areas, such as computer vision, image processing, pattern recognition, or systems identification, the segmentation of heterogeneous high-dimensional data sets is one of the most common and important tasks. Based on the subspace clustering approach, the Generalized Principal Component Analysis (GPCA) is an algebraic-geometric method that attempts to perform this task. However, due to GPCA requires performing matrix decompositions whose computational cost is cubic with respect to the size of the matrix (in the worst case), the data segmentation becomes expensive when such size is very large. Consequently, the present thesis work is intended to support our initial hypothesis: it is possible to find matrix decompositions via randomized schemes that not only reduce the computational costs, but also they maintain the effectiveness of their results. This allows GPCA to manipulate both large and heterogeneous high-dimensional data sets, and thus GPCA can enter into domains where its applicability has been partially or totally restricted.
dc.formatapplication/pdf
dc.languageeng
dc.publisherInstituto Nacional de Astrofísica, Óptica y Electrónica
dc.relationcitation:Perez-Perez F.O.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectinfo:eu-repo/classification/Análisis de los datos/Data analysis
dc.subjectinfo:eu-repo/classification/Reducción de datos/Data reduction
dc.subjectinfo:eu-repo/classification/Algoritmos determinísticos/Deterministic algorithms
dc.subjectinfo:eu-repo/classification/Algoritmos aleatorios/Randomized algorithms
dc.subjectinfo:eu-repo/classification/Subespacio agrupación/Subspace clustering
dc.subjectinfo:eu-repo/classification/Aproximación polinomial/Polynomial approximation
dc.subjectinfo:eu-repo/classification/Álgebra lineal numérica/Numerical linear algebra
dc.subjectinfo:eu-repo/classification/Valor singular de descomposición/Singular value decomposition
dc.subjectinfo:eu-repo/classification/Métodos Monte Carlo/Monte Carlo methods
dc.subjectinfo:eu-repo/classification/Análisis de componentes principales/Principal component analysis
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/12
dc.subjectinfo:eu-repo/classification/cti/1203
dc.subjectinfo:eu-repo/classification/cti/1203
dc.titleImproving the efficiency of algebraic subspace clustering through randomized low-rank matrix approximations
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.audiencestudents
dc.audienceresearchers
dc.audiencegeneralPublic


Este ítem pertenece a la siguiente institución