dc.creatorALEJANDRO ROSALES PEREZ
dc.date2016-01-15
dc.date.accessioned2023-07-25T16:20:45Z
dc.date.available2023-07-25T16:20:45Z
dc.identifierhttp://inaoe.repositorioinstitucional.mx/jspui/handle/1009/36
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7805259
dc.descriptionClassification problems have become a popular task in pattern recognition. This is, perhaps, because they can be used in a number of problems, such as text categorization, handwriting recognition, etc. This has resulted in a large number of methods. Some of theses methods, called pre-processing, aim at preparing the data to be used and others, called learning algorithms, aim at learning a model that maps from the input data into a category. Additionally, most of them have a set of adjustable parameters, called hyper-parameters, that directly impact the performance of the learned models. Hence, when a classification model is constructed, one has to choose among the set of methods and to configure the corresponding hyper-parameters, which can result in a decision with a high number of degrees of freedom. The latter could be a shortcoming when non-expert machine learning users have to face such a problem.
dc.formatapplication/pdf
dc.languageeng
dc.publisherInstituto Nacional de Astrofísica, Óptica y Electrónica
dc.relationcitation:Rosales-Perez A.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectinfo:eu-repo/classification/Toma de decisiones/Decision marking
dc.subjectinfo:eu-repo/classification/Estrategia de evaluación/Evolution strategy
dc.subjectinfo:eu-repo/classification/Algoritmos genéticos/Genetic algorithms
dc.subjectinfo:eu-repo/classification/Mecanismos de validación/Mechasnisms for validation
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/12
dc.subjectinfo:eu-repo/classification/cti/1203
dc.subjectinfo:eu-repo/classification/cti/120307
dc.subjectinfo:eu-repo/classification/cti/120307
dc.titleSurrogate-assisted evolutionary multi-objective full model selection
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.audiencegeneralPublic


Este ítem pertenece a la siguiente institución