dc.creator | EMMANUEL MORALES FLORES | |
dc.date | 2015-03-17 | |
dc.date.accessioned | 2023-07-25T16:20:43Z | |
dc.date.available | 2023-07-25T16:20:43Z | |
dc.identifier | http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/22 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/7805245 | |
dc.description | A brain computer interface (BCI) is a system aimed to provide the brain with
an additional channel of communication and control, which does not depend
on the normal output pathways. This dissertation is focused on the study of
signal processing techniques to address two issues of current BCI methodologies.
These issues are related to spatial filtering techniques and approaches
for capturing temporal behavior of electrical brain signals recorded through two
different modalities: Electroencephalography (EEG) and electrocorticography
(ECoG). Concerning to spatial filtering, a non-supervised algorithm based on
the steepest descent method to adapt spatial filter’s coefficients for preprocessing
ECoG signals is proposed. | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Instituto Nacional de Astrofísica, Óptica y Electrónica | |
dc.relation | citation:Morales-Flores E. | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | info:eu-repo/classification/Cerebral/Brain computer | |
dc.subject | info:eu-repo/classification/Redes neuronales/Neurophysiological signls | |
dc.subject | info:eu-repo/classification/Electroencefalografía/Electroencephalography | |
dc.subject | info:eu-repo/classification/Dinámica recurrente/Dynamical recurrent networks | |
dc.subject | info:eu-repo/classification/Sistemas difusos/Fuzzy systems | |
dc.subject | info:eu-repo/classification/cti/1 | |
dc.subject | info:eu-repo/classification/cti/22 | |
dc.subject | info:eu-repo/classification/cti/2203 | |
dc.subject | info:eu-repo/classification/cti/2203 | |
dc.title | EEG/ECoG-based BCI systems: a NeuroFuzzy approach using recurrent neural networks and adaptive filters | |
dc.type | info:eu-repo/semantics/doctoralThesis | |
dc.audience | generalPublic | |