dc.creatorRAUL QUIROGA BARRANCO
dc.date2008
dc.date.accessioned2023-07-21T15:46:40Z
dc.date.available2023-07-21T15:46:40Z
dc.identifierhttp://cimat.repositorioinstitucional.mx/jspui/handle/1008/951
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7729491
dc.descriptionIn the first part [16] of this work, we described the commutative C∗- algebras generated by Toeplitz operators on the unit ball Bn whose symbols are invariant under the action of certain Abelian groups of biholomorphisms of Bn. Now we study the geometric properties of these symbols. This allows us to prove that the behavior observed in the case of the unit disk (see [3]) admits a natural generalization to the unit ball Bn. Furthermore we give a classification result for commutative Toeplitz operator C∗-algebras in terms of geometric and “dynamic” properties of the level sets of generating symbols.
dc.formatapplication/pdf
dc.languageeng
dc.publisherBirkhauser
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subjectinfo:eu-repo/classification/MSC/Operador Toeplitz
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/12
dc.subjectinfo:eu-repo/classification/cti/1202
dc.subjectinfo:eu-repo/classification/cti/120299
dc.subjectinfo:eu-repo/classification/cti/120299
dc.titleCommutative C∗-Algebras of Toeplitz Operators on the Unit Ball, II. Geometry of the Level Sets of Symbols
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.audienceresearchers


Este ítem pertenece a la siguiente institución