dc.creatorRAUL QUIROGA BARRANCO
dc.date2007
dc.date.accessioned2023-07-21T15:46:36Z
dc.date.available2023-07-21T15:46:36Z
dc.identifierhttp://cimat.repositorioinstitucional.mx/jspui/handle/1008/907
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7729447
dc.descriptionExtending known results for the unit disk, we prove that for the unit ball Bn there exist n+2 different cases of commutative C∗-algebras generated by Toeplitz operators, acting on weighted Bergman spaces. In all cases the bounded measurable symbols of Toeplitz operators are invariant under the action of certain commutative subgroups of biholomorphisms of the unit ball
dc.formatapplication/pdf
dc.languageeng
dc.publisherBirkhauser Verlag
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subjectinfo:eu-repo/classification/MSC/C-Algebras
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/12
dc.subjectinfo:eu-repo/classification/cti/1201
dc.subjectinfo:eu-repo/classification/cti/120199
dc.subjectinfo:eu-repo/classification/cti/120199
dc.titleCommutative C∗-Algebras of Toeplitz Operators on the Unit Ball, I. Bargmann-Type Transforms and Spectral Representations of Toeplitz Operators
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.audienceresearchers


Este ítem pertenece a la siguiente institución