dc.creatorROMAN DE LA VARA SALAZAR
dc.date2007-03-27
dc.date.accessioned2023-07-21T15:46:10Z
dc.date.available2023-07-21T15:46:10Z
dc.identifierhttp://cimat.repositorioinstitucional.mx/jspui/handle/1008/635
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7729180
dc.descriptionUnreplicated fractional factorial experiments with response modeled with Generalized linear models (GLM) are found more and more frequently in industrial applications. GLM analysis relies heavily on large sample results. This paper presents a Bayesian method for detecting the active effects in unreplicated factorial experiments analyzed by a GLM that does not require the large sample assumption. The proposed method is based on Bayesian model selection. In the examples shown, the Bayesian method produces more consistent results thaninference based on Wald’s test, and in a simulated example the usual approach brakes down while the Bayesian method identifies the significant effects correctly. The method is presented for the 2 kexperiments, but it can easily be generalized to other designs.
dc.formatapplication/pdf
dc.languageeng
dc.publisherCentro de Investigación en Matemáticas AC
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0
dc.subjectinfo:eu-repo/classification/MSC/Estadística Bayesiana
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/12
dc.subjectinfo:eu-repo/classification/cti/1209
dc.subjectinfo:eu-repo/classification/cti/610504
dc.subjectinfo:eu-repo/classification/cti/610504
dc.titleBayesian Detection of Active Effects in Designed Experiments Modeled with GLM´S
dc.typeinfo:eu-repo/semantics/report
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.audienceresearchers


Este ítem pertenece a la siguiente institución