dc.creatorPedro Pérez Villanueva
dc.date2007-11
dc.date.accessioned2023-07-20T18:56:56Z
dc.date.available2023-07-20T18:56:56Z
dc.identifierhttp://comimsa.repositorioinstitucional.mx/jspui/handle/1022/383
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7721150
dc.descriptionSince in multiple linear regression, the coefficient vector estimated by Ordinary Least Square (OLS) and Ridge Regression (RR) are only estimations of the complete effect that a set of explanatory variables has over a response variable, in this paper we propose a general standard process, composed of steps to perform the decomposition of a response variable that is needed to obtain, in separate form, the direct effect, correlation effect between any pair of variables, quadratic effect and so on, that a set of explanatory variable has an over response variable in multiple linear regression.
dc.format
dc.languageeng
dc.relationcitation:ESTIMATION PRECISION OF MULTIPLE REGRESSION BY RESPONSE VARIABLE DE COMPOSITION Manuel R. Piña-Monarrez, Salvador A. Noriega M.2, and Pedro Pérez-Villanueva. Proceedings of the 12th Annual International Conference on Industrial Engineering Theory, Applications and Practice Cancun, Mexico November 4-7, 2007
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectinfo:eu-repo/classification/ARTÍCULO/MULTIPLE REGRESSION
dc.subjectinfo:eu-repo/classification/cti/7
dc.subjectinfo:eu-repo/classification/cti/7
dc.titleESTIMATION PRECISION OF MULTIPLE REGRESSION BY RESPONSE VARIABLE DECOMPOSITION
dc.typeinfo:eu-repo/semantics/conferenceProceedings
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.audiencestudents
dc.audienceresearchers


Este ítem pertenece a la siguiente institución