dc.creator | Schulthess, U. | |
dc.creator | Timsina, J. | |
dc.creator | Herrera, J.M. | |
dc.creator | McDonald, A. | |
dc.date | 2013-06-30T05:24:50Z | |
dc.date | 2013-06-30T05:24:50Z | |
dc.date | 2013 | |
dc.date.accessioned | 2023-07-17T19:57:17Z | |
dc.date.available | 2023-07-17T19:57:17Z | |
dc.identifier | 0378-4290 | |
dc.identifier | http://hdl.handle.net/10883/3199 | |
dc.identifier | 10.1016/j.fcr.2012.11.004 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/7509076 | |
dc.description | Accurate estimation of the size and spatial distribution of the yield gap has many practical applications, including relevance to precision agriculture and technology targeting. The objectives of this study were to illustrate a methodology to create a yield gap map and to discuss its potential uses to provide optimal crop management recommendations to the farmers. We used the HybridMaize crop simulation model to estimate potential yield for maize grown in the winter season in northwestern Bangladesh. This is a high yielding environment, where farmers achieve yields as high as 12 Mg/ha. The model predicted a mean potential yield of 12.87 Mg/ha. We used a RapidEye satellite image acquired around tasseling to identify the maize fields, calculate ground cover and its regression to actual yield from farmers? fields. Next, the regression was applied to all the maize pixels in the image to calculate actual yield. In the last step, we created a yield gap map based on the difference between potential and actual yield. Yield gap maps will enable agronomists to identify production constraints on farmers? fields with large yield gaps. Alternatively, by learning from the farmers with the highest actual yields and analyzing their data, it will be possible to generate region or field specific, optimized crop management recommendations. | |
dc.description | 151-156 | |
dc.format | PDF | |
dc.language | English | |
dc.publisher | Elsevier | |
dc.publisher | http://www.sciencedirect.com/science/article/pii/S0378429012003735 | |
dc.rights | CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose. | |
dc.rights | Open Access | |
dc.source | 143 | |
dc.source | Field Crops Research | |
dc.subject | AGRICULTURAL SCIENCES AND BIOTECHNOLOGY | |
dc.subject | Yield Gap Analysis | |
dc.subject | Ground Cover | |
dc.subject | YIELD GAP | |
dc.subject | REMOTE SENSING | |
dc.subject | COVER PLANTS | |
dc.subject | ON-FARM RESEARCH | |
dc.subject | MAIZE | |
dc.title | Mapping field-scale yield gaps for maize: An example from Bangladesh | |
dc.type | Article | |
dc.coverage | Bangladesh | |