dc.creatorBurgueño, J.
dc.creatorDe los Campos, G.
dc.creatorWeigel, K.
dc.creatorCrossa, J.
dc.date2013-06-07T21:02:53Z
dc.date2013-06-07T21:02:53Z
dc.date2012
dc.date.accessioned2023-07-17T19:56:30Z
dc.date.available2023-07-17T19:56:30Z
dc.identifier0011-183X
dc.identifierhttp://hdl.handle.net/10883/1890
dc.identifier10.2135/cropsci2011.06.0299
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7508770
dc.descriptionGenomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the predictive accuracy of these models with: (i) multienvironment analysis without pedigree and marker information, and (ii) multienvironment pedigree or/and marker-based models. A statistical framework for incorporating pedigree and molecular marker information in models for multienvironment data is described and applied to data that originate from wheat (Triticum aestivum L.) multienvironment trials. Two prediction problems relevant to plant breeders are considered: (CV1) predicting the performance of untested genotypes (?newly? developed lines), and (CV2) predicting the performance of genotypes that have been evaluated in some environments but not in others. Results confirmed the superiority of models using both marker and pedigree information over those based on pedigree information only. Models with pedigree and/or markers had better predictive accuracy than simple linear mixed models that do not include either of these two sources of information. We concluded that the evaluation of such trials can benefit greatly from using multienvironment GS models.
dc.description707-719
dc.formatPDF
dc.languageEnglish
dc.publisherCrop Science Society of America (CSSA)
dc.publisherhttps://www.crops.org/publications/cs/abstracts/52/2/707
dc.rightsOpen Access
dc.source2
dc.source52
dc.sourceCrop Science
dc.subjectAGRICULTURAL SCIENCES AND BIOTECHNOLOGY
dc.subjectMARKER-ASSISTED SELECTION
dc.subjectSIMULATION MODELS
dc.subjectWHEAT
dc.subjectDATA ANALYSIS
dc.titleGenomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers
dc.typeArticle


Este ítem pertenece a la siguiente institución