dc.creatorHartkamp, A.D.
dc.creatorDe Beurs, K.
dc.creatorStein, A.
dc.creatorWhite, J.W.
dc.date2012-01-06T05:09:12Z
dc.date2012-01-06T05:09:12Z
dc.date1999
dc.date.accessioned2023-07-17T19:55:31Z
dc.date.available2023-07-17T19:55:31Z
dc.identifier1405-7484
dc.identifierhttp://hdl.handle.net/10883/988
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7508315
dc.descriptionThis paper examines statistical approaches for interpolating climatic data over large regions., providing a brief introduction to interpolation techniques for climate variables of use in agricultural research, as well as general recommendations for future research to assess interpolation techniques. Three approaches 1) inverse distance weighted averaging (IDWA), 2)thin plate smoothing splines and 3) co-kriging were evaluated for a 2,000 km2 square area covering the state of Jalisco, México. Taking into account valued error prediction, data assumptions, and computational simplicity, we recommend use of thin-plate smoothing splines for interpolating climate variables.
dc.description26 pages
dc.formatPDF
dc.languageEnglish
dc.publisherCIMMYT
dc.relationCIMMYT NRG-GIS Series
dc.rightsCIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
dc.rightsOpen Access
dc.subjectAGRICULTURAL SCIENCES AND BIOTECHNOLOGY
dc.subjectCLIMATIC FACTORS
dc.subjectCLIMATE CHANGE
dc.subjectMETEOROLOGICAL OBSERVATIONS
dc.subjectWEATHER DATA
dc.subjectSTATISTICAL METHODS
dc.subjectAGRICULTURE
dc.subjectNATURAL RESOURCES
dc.subjectRESOURCE MANAGEMENT
dc.subjectRESEARCH
dc.subjectPRECIPITATION
dc.subjectCLIMATIC FACTORS
dc.subjectCLIMATE CHANGE
dc.subjectMETEOROLOGICAL OBSERVATIONS
dc.subjectWEATHER DATA
dc.subjectSTATISTICAL METHODS
dc.subjectAGRICULTURE
dc.subjectNATURAL RESOURCES
dc.subjectRESOURCE MANAGEMENT
dc.subjectRESEARCH
dc.subjectPRECIPITATION
dc.titleInterpolation techniques for climate variables
dc.typeBook
dc.coverageJalisco
dc.coverageMexico
dc.coverageMexico


Este ítem pertenece a la siguiente institución