dc.creatorRoitman, Gustavo A.
dc.creatorCernuschi-Frias, Bruno
dc.date2010
dc.date2010
dc.date2023-05-29T17:49:14Z
dc.date.accessioned2023-07-15T10:24:37Z
dc.date.available2023-07-15T10:24:37Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/153582
dc.identifierhttp://39jaiio.sadio.org.ar/sites/default/files/39-jaiio-ast-03.pdf
dc.identifierissn:1850-2806
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7491762
dc.descriptionIn this work we conceive centralized data fusion as a deterministic parameter estimation problem. Two different criterions are compared: best affine unbiased fusion rule (BAUE), and Maximum Likelihood for Gaussian measurement noise. Estimates are described in terms of their covariance matrices, the Cramer-Rao lower bound and simulations. The developed fusion rules are suited to two different image fusion cases: noise reduction under differently exposed images, and blur reduction based on lens response knowledge.
dc.descriptionSociedad Argentina de Informática e Investigación Operativa
dc.formatapplication/pdf
dc.format1551-1562
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Informáticas
dc.subjectmulti-sensor fusion
dc.subjectimage fusion
dc.subjectBAUE
dc.subjectmaximum likelihood
dc.subjectMMSE estimation
dc.titleData Fusion BAUE Estimation of a deterministic vector, applications to image noise and blur reduction
dc.typeObjeto de conferencia
dc.typeObjeto de conferencia


Este ítem pertenece a la siguiente institución