dc.creatorEchebest, Nélida Ester
dc.creatorGuardarucci, María Teresa
dc.creatorScolnik, Hugo Daniel
dc.creatorVacchino, María Cristina
dc.date2001
dc.date2023-03-06T14:47:58Z
dc.date.accessioned2023-07-15T09:44:52Z
dc.date.available2023-07-15T09:44:52Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/149696
dc.identifierissn:1017-1398
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7489242
dc.descriptionThe Projected Aggregation Methods (PAM) for solving linear systems of equalities and/or inequalities, generate a new iterate xk+1by projecting the current point zk onto a separating hyperplane generated by a given linear combination of the original hyperplanes or halfspaces. In H. Scolnik et al we introduced acceleration schemes for solving systems of linear equations by applying optimization techniques to the problem of finding the optimal combination of the hyperplanes within a PAM like framework. In this paper we generalize those results, introducing a new accelerated iterative method for solving systems of linear inequalities, together with the corresponding theoretical convergence results. In order to test its efficiency, numerical results obtained applying the new acceleration scheme to two algorithms introduced by U. M. García-Palomares and F. J. González-Castaño are given.
dc.descriptionMaterial digitalizado en SEDICI gracias a la Biblioteca de la Facultad de Ingeniería (UNLP).
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectAggregated projection methods
dc.subjectSystems of inequalities
dc.subjectIncomplete projections
dc.titleAn acceleration scheme for solving convex feasibility problems using incomplete projection algorithms
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución