dc.creatorChávez, Edgar
dc.creatorDi Genaro, María E.
dc.creatorReyes, Nora Susana
dc.date2022-10
dc.date2023
dc.date2023-03-03T17:12:17Z
dc.date.accessioned2023-07-15T09:44:03Z
dc.date.available2023-07-15T09:44:03Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/149651
dc.identifierisbn:978-987-1364-31-2
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7489189
dc.descriptionMetric space indices make searches for similar objects more efficient in various applications, including multimedia databases and other repositories which handle complex and unstructured objects. Although there are a plethora of indexes to speed up similarity searches, the Distal Spatial Approximation Tree (DiSAT) has shown to be very efficient and competitive. Nevertheless, for its construction, we need to know all the database objects beforehand, which is not necessarily possible in many real applications. The main drawback of the DiSAT is that it is a static data structure. That means, once built, it is difficult to insert new elements into it. This restriction rules it out for many exciting applications. In this paper, we overcome this weakness. We propose and study a dynamic version of DiSAT that allows handling lazy insertions and, at the same time, improves its good search performance. Therefore, our proposal provides a good tradeoff between construction cost, search cost, and space requirement. The result is a much more practical data structure that can be useful in a wide range of database applications.
dc.descriptionXIX Workshop Base de Datos y Minería de Datos (WBDMD)
dc.descriptionRed de Universidades con Carreras en Informática
dc.formatapplication/pdf
dc.format468-477
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Informáticas
dc.subjectsimilarity search
dc.subjectdynamism
dc.subjectmetric spaces
dc.subjectnon-conventional databases
dc.titleAn Efficient Dynamic Version of the Distal Spatial Approximation Trees
dc.typeObjeto de conferencia
dc.typeObjeto de conferencia


Este ítem pertenece a la siguiente institución