dc.creatorCesco, Reynaldo Pedro
dc.date1970
dc.date2022-11-02T12:11:02Z
dc.date.accessioned2023-07-15T08:38:37Z
dc.date.available2023-07-15T08:38:37Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/144965
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7485085
dc.descriptionIn the first part of this paper we discuss two cases in which the celebrated Poincaré’s theorem is not applicable, but it still holds. In the second part, the formal integral of the restricted problem of three bodies proposed by Contopoulos is discussed. We show that without violating Contopoulos’ rule his integral 00 [fórmula] may be reduced to [fórmula], if use is made of the integrals of the osculating problem. Moreover, we give a very simple example showing that the approximate integral to the second order in μ, obtained by applying Contopoulos’ rule, may be in error of order μ2.
dc.descriptionMaterial digitalizado en SEDICI gracias a la Biblioteca de la Facultad de Ciencias Astronómicas y Geofísicas.
dc.descriptionObservatorio Astronómico de La Plata
dc.formatapplication/pdf
dc.languagees
dc.publisherObservatorio Astronómico de la Universidad Nacional de La Plata
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Astronómicas
dc.subjectFísica
dc.subjectContopoulos’ rule
dc.subjectPoincaré’s theorem
dc.titleExact and approximate integrals of some canonical systems : Serie Astronómica - Tomo XXXVI
dc.typePublicacion seriada
dc.typePublicacion seriada


Este ítem pertenece a la siguiente institución