dc.creatorStraminsky, Axel
dc.creatorJacobo, Julio
dc.creatorBuemi, María Elena
dc.date2021-10
dc.date2021
dc.date2022-08-30T16:59:31Z
dc.date.accessioned2023-07-15T07:47:43Z
dc.date.available2023-07-15T07:47:43Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/141291
dc.identifierhttp://50jaiio.sadio.org.ar/pdfs/saiv/SAIV-08.pdf
dc.identifierissn:2683-8990
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7481862
dc.descriptionThe goal of this work is to propose possible improvements on one of the latest models for Video Action Recognition based on currently existing attention mechanisms. We took a model architecture that uses 2 sub-models in paralell: one based on Optical Flow and the other based on the video itself, and proposed the following improvements: adding mixed precision in the training loop, using a Ranger optimizer instead of SGD, and expanding the Attention Mechanism. The video database used for this work was the EGTEA+ that is a action database of first person videos of daily activities.
dc.descriptionSociedad Argentina de Informática e Investigación Operativa
dc.formatapplication/pdf
dc.format36-39
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/3.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
dc.subjectCiencias Informáticas
dc.subjectFirst Person Vision
dc.subjectHuman Computer Interaction
dc.subjectAction Recognition
dc.subjectAttention module
dc.titleAn efficient action detection from first person vision with attention model
dc.typeObjeto de conferencia
dc.typeObjeto de conferencia


Este ítem pertenece a la siguiente institución