dc.creatorEstrebou, César Armando
dc.creatorSaavedra, Marcos David
dc.creatorAdra, Federico
dc.creatorFleming, Martín
dc.date2022-07
dc.date2022
dc.date2022-08-18T14:27:17Z
dc.date.accessioned2023-07-15T07:40:32Z
dc.date.available2023-07-15T07:40:32Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/140652
dc.identifierisbn:978-950-34-2126-0
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7481401
dc.descriptionThis paper describes the progress made in the context of a research and development project on machine learning techniques and algorithms applied to small microcontrollers. The beginning of the development of EmbedIA, a machine learning framework for microcontrollers, is presented. The experiments carried out comparing the proposed framework with other similar frameworks such as Tensorflow Lite Micro, μTensor and EloquentTinyML show an important advantage with respect to memory and inference time required by small microcontrollers.
dc.descriptionInstituto de Investigación en Informática
dc.formatapplication/pdf
dc.format42-46
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Informáticas
dc.subjectMachine Learning
dc.subjectEmbedded Systems
dc.subjectMicrocontrollers
dc.subjectIoT
dc.subjectConvolutional Neural Networks
dc.subjectTinyML
dc.titleTinyML for Small Microcontrollers
dc.typeObjeto de conferencia
dc.typeObjeto de conferencia


Este ítem pertenece a la siguiente institución