dc.creatorGerard, Matías
dc.creatorDi Persia, Leandro
dc.date2021-10
dc.date2021
dc.date2022-08-09T18:01:16Z
dc.date.accessioned2023-07-15T07:35:34Z
dc.date.available2023-07-15T07:35:34Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/140239
dc.identifierhttp://50jaiio.sadio.org.ar/pdfs/asai/ASAI-05.pdf
dc.identifierissn:2451-7585
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7481085
dc.descriptionLa búsqueda de vías metabólicas tiene como objetivo encontrar secuencias de reacciones que permitan transformar un sustrato dado en un producto de interés. Esta tarea puede abordarse como un problema de búsqueda en grafos, usando la estructura molecular de los compuestos y una medida de similaridad entre las estructuras para guiar la búsqueda. Sin embargo, los enfoques basados en esta idea resultan inútiles cuando se carece de la estructura, lo que impide calcular la similaridad. Por su parte, las redes neuronales en grafos han demostrado ser de gran utilidad como extractores de características en datos con estructuras no-euclideanas. Aquí presentamos un modelo neuronal basado en grafos, capaz de aprender representaciones de los compuestos a partir de características simples y de la topología de la red que los conecta. Estas características son luego empleadas para inferir la similaridad, sin que sea necesaria la estructura de los mismos en el proceso. Los resultados muestran que el modelo infiere correctamente la similaridad entre compuestos con estructura conocida, y genera estimaciones razonables para compuestos con estructura desconocida.
dc.descriptionSociedad Argentina de Informática e Investigación Operativa
dc.formatapplication/pdf
dc.format39-52
dc.languagees
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Informáticas
dc.subjectRedes neuronales en grafos
dc.subjectVías metabólicas
dc.subjectSimilaridad entre compuestos
dc.titleModelo neuronal basado en paso de mensajes para estimación de similaridad entre compuestos
dc.typeObjeto de conferencia
dc.typeObjeto de conferencia


Este ítem pertenece a la siguiente institución