dc.creatorCarballido, Jessica Andrea
dc.creatorPonzoni, Ignacio
dc.creatorBrignole, Nélida B.
dc.date2004-06-26
dc.date2022-04-29T14:04:11Z
dc.date.accessioned2023-07-15T06:25:31Z
dc.date.available2023-07-15T06:25:31Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/135315
dc.identifierhttps://publicaciones.sadio.org.ar/index.php/EJS/article/view/106
dc.identifierissn:1514-6774
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7476614
dc.descriptionA Multi-Objective Genetic Algorithm (MOGA) application, which is based on the aggregating approach, is proposed in this article. Its aim is to find a consistent instrument configuration for industrial process plants that will constitute a convenient initial set of input data for structural Observability Analysis Algorithms (OAs). The better this configuration is, the faster the OAs will converge to a satisfactory solution. Algorithmic effectiveness was evaluated through the analysis of small academic case studies. The results obtained through our algorithm show excellent performance. Therefore, it can be stated that the prototype presented in this work is good enough to serve as a sound basis for the development of the definitive MOGA module, whose implementation will support large-size industrial plant models.
dc.descriptionSociedad Argentina de Informática e Investigación Operativa
dc.formatapplication/pdf
dc.format34-41
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsCreative Commons Attribution 4.0 International (CC BY 4.0)
dc.subjectCiencias Informáticas
dc.subjectMulti-Objective Optimization
dc.subjectGenetic algorithms
dc.subjectSensor Network Design
dc.titleInitial Sensor Network Design with a Multi-Objective Genetic Algorithm
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución