dc.creatorRottoli, Giovanni Daián
dc.creatorMerlino, Hernán
dc.date2020-08
dc.date2022-09-12T17:05:00Z
dc.date.accessioned2023-07-15T05:13:34Z
dc.date.available2023-07-15T05:13:34Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/141906
dc.identifierissn:1693-6930
dc.identifierissn:2302-9293
dc.identifierissn:2087-278X
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7472558
dc.descriptionSpatial associations are one of the most relevant kinds of patterns used by business intelligence regarding spatial data. Due to the characteristics of this particular type of information, different approaches have been proposed for spatial association mining. This wide variety of methods has entailed the need for a process to integrate the activities for association discovery, one that is easy to implement and flexible enough to be adapted to any particular situation, particularly for small and medium-size projects to guide the useful pattern discovery process. Thus, this work proposes an adaptable knowledge discovery process that uses graph theory to model different spatial relationships from multiple scenarios, and frequent subgraph mining to discover spatial associations. A proof of concept is presented using real data.
dc.descriptionFacultad de Informática
dc.formatapplication/pdf
dc.format1884-1891
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-sa/4.0/
dc.rightsCreative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
dc.subjectInformática
dc.subjectFrequent subgraph mining
dc.subjectSARM
dc.subjectSpatial association mining
dc.subjectSpatial data mining
dc.subjectSpatial knowledge discovery
dc.titleSpatial association discovery process using frequent subgraph mining
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución