dc.creatorCastiglioni, José Luis
dc.creatorSan Martín, Hernán Javier
dc.date2012-10-20
dc.date2022-11-23T12:16:14Z
dc.date.accessioned2023-07-15T05:10:14Z
dc.date.available2023-07-15T05:10:14Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/146211
dc.identifierissn:0039-3215
dc.identifierissn:1572-8730
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7472346
dc.descriptionIn this paper we shall prove that certain subvarieties of the variety of Salgebras (Heyting algebras with successor) has amalgamation. This result together with an appropriate version of Theorem 1 of [L. L. Maksimova, Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudo-boolean algebras, Algebra i Logika, 16(6):643-681, 1977] allows us to show interpolation in the calculus IPC S (n), associated with these varieties. We use that every algebra in any of the varieties of S-algebras studied in this work has a canonical extension, to show completeness of the calculus IPC S (n) with respect to appropriate Kripke models.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format1255-1269
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectAmalgamation property
dc.subjectCraig’s interpolation theorem
dc.subjectHeyting algebras with operators
dc.subjectExtensions of intuitionistic propositional calculus
dc.titleOn some Classes of Heyting Algebras with Successor that have the Amalgamation Property
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución