dc.creatorCincotta, Pablo Miguel
dc.creatorGiordano, Claudia Marcela
dc.date2016-03-04
dc.date2022-10-26T17:57:57Z
dc.date.accessioned2023-07-15T05:09:25Z
dc.date.available2023-07-15T05:09:25Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/144606
dc.identifierissn:0075-8450
dc.identifierissn:1616-6361
dc.identifierisbn:978-3-662-48410-4
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7472297
dc.descriptionIn this chapter we discuss in a pedagogical way and from the very beginning the Mean Exponential Growth factor of Nearby Orbits (MEGNO) method, that has proven, in the last ten years, to be efficient to investigate both regular and chaotic components of phase space of a Hamiltonian system. It is a fast indicator that provides a clear picture of the resonance structure, the location of stable and unstable periodic orbits as well as a measure of hyperbolicity in chaotic domains which coincides with that given by the maximum Lyapunov characteristic exponent but in a shorter evolution time. Applications of the MEGNO to simple discrete and continuous dynamical systems are discussed and an overview of the stability studies present in the literature encompassing quite different dynamical systems is provided.
dc.descriptionFacultad de Ciencias Astronómicas y Geofísicas
dc.formatapplication/pdf
dc.format93-128
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectFísica
dc.subjectPeriodic orbit
dc.subjectChaotic motion
dc.subjectChaotic orbit
dc.subjectRegular orbit
dc.subjectRegular motion
dc.titleTheory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method
dc.typeLibro
dc.typeCapitulo de libro


Este ítem pertenece a la siguiente institución