dc.creatorBozzolo, G.
dc.creatorVary, James P.
dc.creatorCanosa, Norma Beatriz
dc.creatorNuñez, J.
dc.creatorPlastino, Ángel Luis
dc.date1985
dc.date2022-11-04T18:40:08Z
dc.date.accessioned2023-07-15T05:01:03Z
dc.date.available2023-07-15T05:01:03Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/145245
dc.identifierissn:0340-2193
dc.identifierissn:1434-601X
dc.identifierissn:1434-6001
dc.identifierissn:0939-7922
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7471767
dc.descriptionA variational method is developed based on the Hartree-Fock approximation, but not restricted to a single Slater determinant trial space. The idea is to find a subspace of collective states which are strongly coupled to the ground state by providing a systematic technique to generate these basis states from a Hartree-Fock-like state. In the resulting basis space a residual diagonalization is easily performed. An application to a solvable model is made, both to justify and to investigate the structure of our approach.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format429-434
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectFísica
dc.subjectModels based on group theory
dc.subjectNuclear Density Functional Theory and extensions
dc.titleDynamical basis generation and structure of the Hartree-Fock approximation
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución