dc.creatorLibutti, Leandro Ariel
dc.creatorIgual, Francisco
dc.creatorPiñuel, Luis
dc.creatorDe Giusti, Laura Cristina
dc.creatorNaiouf, Marcelo
dc.creatorRucci, Enzo
dc.creatorNaiouf, Marcelo
dc.creatorChichizola, Franco
dc.creatorDe Giusti, Laura Cristina
dc.date2020-10-24
dc.date2022-11-04T17:15:23Z
dc.date.accessioned2023-07-15T04:59:54Z
dc.date.available2023-07-15T04:59:54Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/145222
dc.identifierissn:1865-0929
dc.identifierissn:1865-0937
dc.identifierisbn:978-3-030-61218-4
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7471694
dc.descriptionThe TensorFlow framework was designed since its inception to provide multi-thread capabilities, extended with hardware accelerator support to leverage the potential of modern architectures. The amount of parallelism in current versions of the framework can be selected at multiple levels (intra- and inter-paralellism) under demand. However, this selection is fixed, and cannot vary during the execution of training/inference sessions. This heavily restricts the flexibility and elasticity of the framework, especially in scenarios in which multiple TensorFlow instances co-exist in a parallel architecture. In this work, we propose the necessary modifications within TensorFlow to support dynamic selection of threads, in order to provide transparent malleability to the infrastructure. Experimental results show that this approach is effective in the variation of parallelism, and paves the road towards future co-scheduling techniques for multi-TensorFlow scenarios.
dc.descriptionInstituto de Investigación en Informática
dc.formatapplication/pdf
dc.format30-40
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Informáticas
dc.subjectTensorFlow
dc.subjectMalleability
dc.subjectContainers
dc.subjectResource management
dc.subjectCo-scheduling
dc.titleTowards a Malleable Tensorflow Implementation
dc.typeLibro
dc.typeCapitulo de libro


Este ítem pertenece a la siguiente institución