dc.creatorGiordano, Claudia Marcela
dc.creatorCincotta, Pablo Miguel
dc.date2018-04-28
dc.date2022-09-01T18:24:53Z
dc.date.accessioned2023-07-15T04:55:13Z
dc.date.available2023-07-15T04:55:13Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/141472
dc.identifierissn:0923-2958
dc.identifierissn:1572-9478
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7471391
dc.descriptionIn the present work, we introduce two new estimators of chaotic diffusion based on the Shannon entropy. Using theoretical, heuristic and numerical arguments, we show that the entropy, S, provides a measure of the diffusion extent of a given small initial ensemble of orbits, while an indicator related with the time derivative of the entropy, S′, estimates the diffusion rate. We show that in the limiting case of near ergodicity, after an appropriate normalization, S′ coincides with the standard homogeneous diffusion coefficient. The very first application of this formulation to a 4D symplectic map and to the Arnold Hamiltonian reveals very successful and encouraging results.
dc.descriptionInstituto de Astrofísica de La Plata
dc.formatapplication/pdf
dc.format1-21
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsCreative Commons Attribution 4.0 International (CC BY 4.0)
dc.subjectAstronomía
dc.subjectFísica
dc.subjectChaotic diffusion
dc.subjectMultidimensional dynamical systems
dc.subjectEntropy
dc.subjectRate of diffusion
dc.titleThe Shannon entropy as a measure of diffusion in multidimensional dynamical systems
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución