dc.creatorAntezana, Jorge Abel
dc.creatorMarzo, Jordi
dc.creatorOrtega Cerdà, Joaquim
dc.date2021-08-30
dc.date2022-08-11T17:34:53Z
dc.date.accessioned2023-07-15T04:54:03Z
dc.date.available2023-07-15T04:54:03Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/140442
dc.identifierissn:1617-9447
dc.identifierissn:2195-3724
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7471315
dc.descriptionLet Ω be a smooth, bounded, convex domain in Rn and let Λk be a finite subset of Ω. We find necessary geometric conditions for Λk to be interpolating for the space of multivariate polynomials of degree at most k. Our results are asymptotic in k. The density conditions obtained match precisely the necessary geometric conditions that sampling sets are known to satisfy and are expressed in terms of the equilibrium potential of the convex set. Moreover we prove that in the particular case of the unit ball, for k large enough, there are no bases of orthogonal reproducing kernels in the space of polynomials of degree at most k.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format1-19
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsCreative Commons Attribution 4.0 International (CC BY 4.0)
dc.subjectMatemática
dc.subjectCiencias Exactas
dc.subjectInterpolating sequences
dc.subjectMultivariate polynomials
dc.subjectReproducing kernels
dc.titleNecessary Conditions for Interpolation by Multivariate Polynomials
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución