dc.creatorPadró, Juan Manuel
dc.creatorPonzinibbio, Agustín
dc.creatorAgudelo Mesa, Leidy Bibiana
dc.creatorReta, Mario Roberto
dc.date2011-03
dc.date2022-08-04T16:35:52Z
dc.date.accessioned2023-07-15T04:53:30Z
dc.date.available2023-07-15T04:53:30Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/139957
dc.identifierissn:1618-2650
dc.identifierissn:1618-2642
dc.identifierissn:0016-1152
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7471281
dc.descriptionThe partition coefficients, P<sub>IL/w</sub>, for different probe molecules as well as for compounds of biological interest between the room-temperature ionic liquids (RTILs) 1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF₆], 1-hexyl-3-methylimidazolium hexafluorophosphate, [HMIM][PF₆], 1-octyl-3-methylimidazolium tetrafluoroborate, [OMIM][BF₄] and water were accurately measured. [BMIM][PF₆] and [OMIM][BF₄] were synthesized by adapting a procedure from the literature to a simpler, single-vessel and faster methodology, with a much lesser consumption of organic solvent. We employed the solvation-parameter model to elucidate the general chemical interactions involved in RTIL/water partitioning. With this purpose, we have selected different solute descriptor parameters that measure polarity, polarizability, hydrogen-bond-donor and hydrogen-bond-acceptor interactions, and cavity formation for a set of specifically selected probe molecules (the training set). The obtained multiparametric equations were used to predict the partition coefficients for compounds not present in the training set (the test set), most being of biological interest. Partial solubility of the ionic liquid in water (and water into the ionic liquid) was taken into account to explain the obtained results. This fact has not been deeply considered up to date. Solute descriptors were obtained from the literature, when available, or else calculated through commercial software. An excellent agreement between calculated and experimental log P<sub>IL/w</sub> values was obtained, which demonstrated that the resulting multiparametric equations are robust and allow predicting partitioning for any organic molecule in the biphasic systems studied.
dc.descriptionFacultad de Ciencias Exactas
dc.descriptionLaboratorio de Separaciones Analíticas
dc.descriptionLaboratorio de Estudio de Compuestos Orgánicos
dc.formatapplication/pdf
dc.format2807-2820
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsCreative Commons Attribution 4.0 International (CC BY 4.0)
dc.subjectCiencias Exactas
dc.subjectQuímica
dc.subjectIonic liquids
dc.subjectPartition coefficients
dc.subjectLiquid–liquid extraction
dc.subjectSolvation-parameter model
dc.subjectRTIL synthesis
dc.titlePredicting the partitioning of biological compounds between room-temperature ionic liquids and water by means of the solvation-parameter model
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución