dc.creatorScolnik, Hugo Daniel
dc.creatorEchebest, Nélida Ester
dc.creatorGuardarucci, María Teresa
dc.date2014-05
dc.date2022-03-30T17:42:58Z
dc.date.accessioned2023-07-15T04:44:32Z
dc.date.available2023-07-15T04:44:32Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/133575
dc.identifierissn:1017-1398
dc.identifierissn:1572-9265
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7470711
dc.descriptionThe aim of this paper is to extend the applicability of the incomplete oblique projections method (IOP) previously introduced by the authors for solving inconsistent linear systems to the box constrained case. The new algorithm employs incomplete projections onto the set of solutions of the augmented system Ax − r = b, together with the box constraints, based on a scheme similar to the one of IOP, adding the conditions for accepting an approximate solution in the box. The theoretical properties of the new algorithm are analyzed, and numerical experiences are presented comparing its performance with some well-known methods.
dc.descriptionFacultad de Ingeniería
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format17-32
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsCreative Commons Attribution 4.0 International (CC BY 4.0)
dc.subjectIngeniería
dc.subjectMatemática
dc.subjectInconsistent systems
dc.subjectBox constrained
dc.subjectIncomplete projections
dc.titleOn the incomplete oblique projections method for solving box constrained least squares problems
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución