dc.creatorMaltz, Alberto Leonardo
dc.date1999
dc.date2022-07-06T16:22:44Z
dc.date.accessioned2023-07-15T04:43:09Z
dc.date.available2023-07-15T04:43:09Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/139036
dc.identifierissn:0894-9840
dc.identifierissn:1572-9230
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7470622
dc.descriptionThe partial-sum processes, indexed by sets, of a stationary nonuniform φ-mixing random field on the d-dimensional integer lattice are considered. A moment inequality is given from which the convergence of the finite-dimensional distributions to a Brownian motion on the Borel subsets of [0, 1]d is obtained. A Uniform CLT is proved for classes of sets with a metric entropy restriction and applied to certain Gibbs fields. This extends some results of Chen(5) for rectangles. In this case and when the variables are bounded a simpler proof of the uniform CLT is given.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format643-660
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsCreative Commons Attribution 4.0 International (CC BY 4.0)
dc.subjectMatemática
dc.subjectRandom fields on integer lattice
dc.subjectpartial-sum process
dc.subjectBrownian motion
dc.subjectuniform central limit theorem
dc.subjectnonuniform O-mixing
dc.subjectmetric entropy
dc.subjectGibbs fields
dc.titleOn the Central Limit Theorem for Nonuniform φ-Mixing Random Fields
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución