dc.creatorBollini, Carlos Guido
dc.creatorRocca, Mario Carlos
dc.date2004
dc.date2022-03-02T18:55:14Z
dc.date.accessioned2023-07-15T04:18:04Z
dc.date.available2023-07-15T04:18:04Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/131842
dc.identifierissn:0020-7748
dc.identifierissn:1572-9575
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7469021
dc.descriptionIn this work, a general definition of convolution between two arbitrary Tempered Ultradistributions is given. When one of the Tempered Ultradistributions is rapidly decreasing this definition coincides with the definition of J. Sebastiao e Silva. In the four-dimensional case, when the Tempered Ultradistributions are even in the variables $k^0$ and $\rho$ (see Section 5) we obtain an expression for the convolution, which is more suitable for practical applications. The product of two arbitrary even (in the variables $x^0$ and $r$) four dimensional distributions of exponential type is defined via the convolution of its corresponding Fourier Transforms. With this definition of convolution, we treat the problem of singular products of Green Functions in Quantum Field Theory. (For Renormalizable as well as for Nonrenormalizable Theories). Several examples of convolution of two Tempered Ultradistributions are given. In particular we calculate the convolution of two massless Wheeeler's propagators and the convolution of two complex mass Wheeler's propagators.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format59-76
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectFísica
dc.subjectQuantum mechanics
dc.subjectFormalism
dc.subjectFunctional analytical methods
dc.titleConvolution of n-dimensional Tempered Ultradistributions and Field Theory
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución